Abstract
Supramolecular fluorescent probes for the detection of reactive oxygen species (ROSs) are designed based on a pro-guest strategy. Nine commercially available fluorescent dyes, six host molecules, and a pro-guest are used to rapidly generate a library of 54 potential supramolecular probes. These potential supramolecular probes are screened in a high-throughput fashion using a plate reader to discover seven "hits" or workable probes. The mechanism is confirmed to be ROS-induced conversion from a low-binding-affinity pro-guest to a high-binding-affinity guest and the competitive displacement of the encapsulated fluorescent dye. The response to H2O2 of four supramolecular probes is found to be concentration-dependent and may be used for quantitative analysis of H2O2. The supramolecular probe is selectively responsive toward other oxidative agents, such as NaClO and Na2SO3. The cell study shows that supramolecular probes are capable of detecting H2O2 in human cancer cells (MCF-7 or HeLa).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.