Abstract
Combinatorial regimens that rationally pair molecular inhibitors with standard cytotoxic chemotherapeutics are used to improve therapeutic outcomes. Simultaneously engineering these therapies within a single nanocarrier that spans cytotoxic, antiangiogenic, and anti-invasive mechanisms and that enables the delivery of unique drug combinations remains a technical challenge. In this study, we developed a simple and broadly applicable strategy in which ultrastable cytotoxic nanoparticles with an established excellent antitumor efficacy and π-rich inner core structure supramolecularly stabilized the antiangiogenic molecular inhibitor apatinib to create a synergistic drug delivery system (termed sTKI-pSN38). This small-sized nanoparticle accomplished the sequential release of both encapsulated drugs to exert antimetastatic, antivascular, and cytotoxic activities simultaneously. In xenograft models of hepatocellular carcinoma, a single intravenous administration of sTKI-pSN38 elicited robust and durable tumor reduction and suppressed metastasis to lymph nodes. Interestingly, sTKI-pSN38 treatment alleviated intratumoral hypoxia, which could contribute to impaired tumor metastasis and reduced drug resistance. Collectively, this nanotherapeutic platform offers a new strategy for cancer therapy by simply engineering a drug cocktail in conventional nanoparticles and by enabling the spatiotemporal modulation of drug release to enhance the synergy of the combined drugs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.