Abstract

The enhancement in dielectric properties and self-healing ability for dielectric materials has been a challenging subject these years. Herein, a series of self-healed dielectric elastomers by combining the ferric ions and carboxyl-containing poly(sulfone siloxane)s is reported. Experimental results indicate the excellent dielectric properties of obtained elastomers, as the dielectric constant up to 12.8. SEM micrographs exhibit that carboxyl groups and ferric ions can aggregate together to generate clusters, which further result in interfacial polarization. Besides, high polarity dipole units including sulfonyl units and carboxyl groups contribute to dipole polarization. The overlay of the two mentioned polarization eventually results in the high dielectric property. The dielectric constant obviously increases with the contents of carboxyl groups and ferric ions. Moreover, the samples are feasible for recycling and reprocessing with high self-healing efficiency, owing to the reversibility of the coordination bond. A self-healing efficiency of 92.1% in tensile strength of the obtained samples can be reached after 2h treatment at 60 °C. And the elastomers can also conveniently recover most mechanical properties after solution treatment. This work may offer a promising method for preparing dielectric elastomers with high dielectric properties and self-healing ability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call