Abstract

Photothermal therapy (PTT) is demonstrated to be an effective methodology for cancer treatment. However, the relatively low photothermal conversion efficiency, limited tumor accumulation, and penetration still remain to be challenging issues that hinder the clinical application of PTT. Herein, the core-shell hierarchical nanostructures induced by host-guest interaction between water-soluble pillar[5]arene (WP5) and polyethylene glycol-modified aniline tetramer (TAPEG) are constructed. The pH-responsive performance endows the core-shell nanostructures with size switchable property, with an average diameter of 200nm in the neutral pH and 60nm in the acidic microenvironment, which facilitates not only tumor accumulation but also tumor penetration. Moreover, the structure switch of WP5⊃TAPEG under acidic microenvironment and the dual mechanism regulated extending of п conjugate, inclusion in the hydrophobic cavity of WP5 and the dense distribution in the core-shell structured assemblies, dramatically enhance the absorption in the near-infrared-II region and, further, the photothermal conversion efficiency (60.2%). The as-designed intelligent nanoplatform is demonstrated for improved antitumor efficacy via PTT.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.