Abstract

The fabrication of core-shell structural nanosilica@liposome nanocapsules as a drug delivery vehicle is reported. SiO(2) nanoparticles are encapsulated within liposomes by a W/O/W emulsion approach to form supramolecular assemblies with a core of colloidal particles enveloped by a lipid bilayer shell. A nanosilica core provides charge compensation and architectural support for the lipid bilayer, which significantly improves their physical stability. A preliminary application of these core-shell nanocapsules for hemoglobin (Hb) delivery is described. Through the H-bonding interaction between the hydroxyl groups on nanosilicas and the amino nitrogens of Hb, Hb-SiO(2) nanocomplexes in which the saturated adsorption amount of Hb on SiO(2) is 0.47 g g(-1) are coated with lipids to generate core-shell Hb-SiO(2)@liposome nanocapsules with mean diameters of 60-500 nm and Hb encapsulation efficiency of 48.4-87.9%. Hb-SiO(2)@liposome supramolecular nanovehicles create a mode of delivery that stabilizes the encapsulated Hb and achieves long-lasting release, thereby improving the efficacy of the drug. Compared with liposome-encapsulated Hb and Hb-loaded SiO(2) particles, such core-shell nanovehicles show substantially enhanced release performance of Hb in vitro. This finding opens up a new window of liposome-based formulations as drug delivery nanovehicles for widespread pharmaceutical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.