Abstract
Infections of antibiotic-resistant pathogens have caused a series of public health crises across the world. According to the latest published reports, an antibiotic switch has been recognized as a potential strategy to control antibacterial activity for combating this serious drug resistance. Thus, it is anticipated that more effective antibiotic switches should be obtained by further exploring the developed strategies. Here, we report an improved pretreatment strategy using a surfactant (Triton X-100) for constructing an effective supramolecular antibiotic switch based on a poly(fluorene-co-phenylene) derivative (PFP) and cucurbit[7]uril (CB[7]), which can regulate the aggregation state of polymers before the supramolecular self-assembly process occurs. Triton X-100 can regulate the aggregation states of conjugated polymers, which is used to successfully realize the reversible control of bactericidal activity of PFP in the dark and under white light irradiation by supramolecular assembly/disassembly between PFP and CB[7]. Specialized antibiotic switches are significantly important to fight pathogenic infections and solve the drug resistance crisis in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.