Abstract

Cation-π and charge-transfer (CT) interactions are pervasive with significant implications in the fields of chemistry, materials science, and biology. However, much less is known about the construction of interfacial assemblies based on the two interactions. Here, by combining cation-π and CT interactions between an acceptor molecule, dicationic naphthalenediimide, and an aromatic donor, pyrene-terminated poly-l-lactic acid, we report the generation of supramolecular complex surfactants (SCSs) in situ at the toluene-water interface. The utilization of SCSs as building blocks enables the fabrication of interfacial assemblies including 2D films, emulsions, and structured liquids. By modification of the redox state of the acceptor molecules under chemical stimulus, the association/assembly and dissociation/disassembly of SCSs can be precisely regulated, imparting intriguing redox-responsive properties to the resulting assemblies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.