Abstract

AbstractSupramolecular chirogenesis has emerged as an effective strategy to access symmetry breaking in artificial systems. However, the chirogenic signals suffer from high susceptibility toward environmental variations. An effective strategy has been developed to address this issue by constructing platinum(II)‐based tweezer/guest complexes stabilized by two‐fold donor–acceptor and PtII–PtII metal–metal interactions. Upon guest encapsulation, the two pincers on the achiral PtII tweezer undergo a stereospecific twist to minimize steric repulsion, thus locking tweezer/guest complexes into the preferred chiral conformations. The induced chiroptical effects display outstanding solvent and temperature tolerance, ascribed to the balance between electrostatic and desolvation effects for the involved non‐covalent interactions. Moreover, hierarchical and multi‐component supramolecular assembly of tweezer/guest complexes provide a convenient way to modulate chirogeneic signals for their intensities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.