Abstract

Monodentate ligand binding is facilitated by supramolecular chirality transformations from propeller-shaped chirality into single-twist chirality by altering the self-assembly of C 3-symmetric chiral ligands. The C 3-symmetric chiral ligands (Im R 3Bz and Im S 3Bz) contain three chiral imidazole side arms (Im R and Im S ) at the 1,3,5-positions of a central benzene ring. Upon coordination to zinc ions (Zn2+), which have a tetrahedral coordination preference, the C 3-symmetric chiral ligands assemble, in a stepwise manner, into a propeller-shaped assembly with a general formula (Im( R or S ) 3Bz)4(Zn2+)3. In this structure each Zn2+ ion coordinates to the three individual imidazole side arms. The resulting assembly is formally coordinatively unsaturated (coordination number, n = 3) and capable of accepting monodentate co-ligands (imidazole: ImH2) to afford a coordinatively saturated assembly [(ImH2)3(Im R 3Bz)4(Zn2+)3]. The preformed propeller-shaped chirality is preserved during this transformation. However, an excess of the monodentate co-ligand (ImH2/Zn2+ molar ratio of ∼1.7) alters the propeller-shaped assembly into a stacked dimer assembly [(ImH2) m (Im R 3Bz)2(Zn2+)3] (m = 4-6) with single-twist chirality. This switch alters the degree of enhancement and the circular dichroism (CD) pattern, suggesting a structural transition into a chiral object with a different shape. This architectural chirality transformation presents a new approach to forming dynamic coordination-assemblies, which have transformable geometric chiral structures.

Highlights

  • Topology plays an important role in determining the properties of self-assembled structures at various hierarchical levels from the molecular to supramolecular scales

  • We propose a exible ligand approach to address supramolecular chirality transformations driven by monodentate ligand binding

  • The C3-symmetric chiral ligands contain chiral alkyl side chains, neither ImR3Bz nor ImS3Bz show a circular dichroism (CD) signal in the absence of Zn2+ (Fig. 1a, blue lines), because their chiral alkyl side chains are separated from the central chromophore unit (Scheme 1)

Read more

Summary

Introduction

Topology plays an important role in determining the properties of self-assembled structures at various hierarchical levels from the molecular to supramolecular scales.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.