Abstract

Supramolecular chemistry is the chemistry of the intermolecular bond, covering the structures and functions of the entities formed by association of two or more chemical species. Molecular recognition in the supermolecules formed by receptor-substrate binding rests on the principles of molecular complementarity, as found in spherical and tetrahedral recognition, linear recognition by co-receptors, metallo-receptors, amphilic receptors and anion coordination. Supramolecular catalysis by receptors bearing reactive groups effects bond cleavage reactions as well as synthetic bond formation via co-catalysis. Lipophilic receptor molecules act as selective carriers for various substrates and allow the setting up of coupled transport processes linked to electron and proton gradients or to light. Whereas endo-receptors bind substrates in molecular cavities by convergent interactions, exo-receptors rely on interactions between the surfaces of the receptor and the substrate; thus new types of receptors such as the metallonucleates may be designed. In combination with polymolecular assemblies, receptors, carriers and catalysts may lead to molecular and supramolecular devices, defined as structurally organized and functionally integrated chemical systems built on supramolecular architectures. Their recognition, transfer and transformation features are analyzed specifically from the point of view of molecular devices that would operate via photons, electrons or ions, thus defining the fields of molecular photonics, electronics and ionics. Introduction of photosensitive groups yields photoactive receptors for the design of light conversion and charge separation centres. Redox active polyolefinic chains represent molecular wires for electron transfer through membranes. Tubular mesophases formed by stacking of suitable macrocyclic receptors may lead to ion channels. Molecular self-assembling occurs with acyclic ligands that form complexes with a double helical structure. Such developments in molecular and supramolecular design and engineering open perspectives towards the realization of molecular photonic, electronic and ionic devices, that would perform highly selective recognition, reaction and transfer operations for signal and information processing at the molecular level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call