Abstract

A water-soluble self-assembled supramolecular host molecule catalyzes the hydrolysis of orthoformates in basic solution. Comparison of the rate constants of the catalyzed and uncatalyzed reactions for hydrolysis displays rate accelerations of up to 3900 for tri- n-propyl orthoformate. Kinetic analysis shows that the mechanism of hydrolysis with the supramolecular host obeys the Michaelis-Menten model. Mechanistic studies, including (13)C-labeling experiments, revealed that the resting state of the catalytic system is the neutral substrate encapsulated in the host. Activation parameters for the k cat step of the reaction revealed that upon substrate encapsulation in the assembly, the entropy of activation becomes more negative in contrast to the uncatalyzed reaction. Furthermore, solvent isotope effects reveal a normal k(H 2O)/ k(D 2O) = 1.6, confirming an A-S E2 mechanism in which proton transfer occurs in the rate-limiting step. This is in contrast with the A1 mechanism of the uncatalyzed reaction in which decomposition of the protonated substrate is rate-limiting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.