Abstract

The equilibrium association free enthalpies ΔG(a) for typical supramolecular complexes in solution are calculated by ab initio quantum chemical methods. Ten neutral and three positively charged complexes with experimental ΔG(a) values in the range 0 to -21 kcal mol(-1) (on average -6 kcal mol(-1)) are investigated. The theoretical approach employs a (nondynamic) single-structure model, but computes the various energy terms accurately without any special empirical adjustments. Dispersion corrected density functional theory (DFT-D3) with extended basis sets (triple-ζ and quadruple-ζ quality) is used to determine structures and gas-phase interaction energies (ΔE), the COSMO-RS continuum solvation model (based on DFT data) provides solvation free enthalpies and the remaining ro-vibrational enthalpic/entropic contributions are obtained from harmonic frequency calculations. Low-lying vibrational modes are treated by a free-rotor approximation. The accurate account of London dispersion interactions is mandatory with contributions in the range -5 to -60 kcal mol(-1) (up to 200% of ΔE). Inclusion of three-body dispersion effects improves the results considerably. A semilocal (TPSS) and a hybrid density functional (PW6B95) have been tested. Although the ΔG(a) values result as a sum of individually large terms with opposite sign (ΔE vs. solvation and entropy change), the approach provides unprecedented accuracy for ΔG(a) values with errors of only 2 kcal mol(-1) on average. Relative affinities for different guests inside the same host are always obtained correctly. The procedure is suggested as a predictive tool in supramolecular chemistry and can be applied routinely to semirigid systems with 300-400 atoms. The various contributions to binding and enthalpy-entropy compensations are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.