Abstract

The principles of protein structure design, molecular recognition, and supramolecular and combinatorial chemistry have been applied to develop a convergent metal-ion-assisted self-assembly approach that is a very simple and effective method for the de novo design and the construction of topologically predetermined antiparallel beta-sheet structures and self-assembled catalysts. A new concept of in situ generation of bidentate P-ligands for transition-metal catalysis, in which two complementary, monodentate, peptide-based ligands are brought together by employing peptide secondary structure motif as constructing tool to direct the self-assembly process, is achieved through formation of stable beta-sheet motifs and subsequent control of selectivity. The supramolecular structures were studied by (1)H, (31)P, and (13)C NMR spectroscopy, ESI mass spectrometry, X-ray structure analysis, and theoretical calculations. Our initial catalysis results confirm the close relationship between the self-assembled sheet conformations and the catalytic activity of these metallopeptides in the asymmetric rhodium-catalyzed hydroformylation. Good catalyst activity and moderate enantioselectivity were observed for the selected combination of catalyst and substrate, but most importantly the concept of this new methodology was successfully proven. This work presents a perspective interface between protein design and supramolecular catalysis for the design of beta-sheet mimetics and screening of libraries of self-organizing supramolecular catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.