Abstract

The ability to precisely control the subcellular distribution of luminous materials presents unprecedented advantages for understanding cell biology and disease therapy. We introduce a luminescence tool for subcellular distribution imaging and differentiation of live and dead cells, utilizing cationic organoplatinum(II) complexes that exhibit well-defined monomeric to aggregate nanostructures along with concentration-dependent switchable luminescence from green to red due to assembly via PtII ⋅⋅⋅PtII and π-π stacking interactions. One of the complexes was chosen to demonstrate the unique lysosome-to-nucleus subcellular re-distribution and imaging capability in live and dead cells, respectively, which represents the first example to discriminate the subcellular localization of platinum(II) complexes through differential luminescence response. These new findings facilitate the fundamental understanding of self-assembly behaviors of platinum(II) complexes for potential subcellular detection assays.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call