Abstract

In this work, a new approach for surface-mediated gene delivery based on inclusion complex formation between the solid surface and delivery vehicles is presented. beta-Cyclodextrin (CD) molecules form high-affinity inclusion complexes with adamantane. This complexation ability was used to specifically immobilize beta-CD-modified poly(ethylenimine) (CD-PEI) nanoparticles on adamantane- (AD-) modified self-assembled monolayers. To investigate the nanoparticle/surface interaction, CD-PEI-based and PEI-based nanoparticles were passed through a surface plasmon resonance flow cell containing the monolayers. CD-PEI nanoparticles are specifically immobilized on the chip surface by cyclodextrin-adamantane inclusion complex formation. Minimal nanoparticle adsorption was detected with PEI-based nanoparticles or on control surfaces. Competition studies with free cyclodextrins reveal that the multivalent interactions between CD-PEI nanoparticles and the adamantane-modified surface results in significantly higher binding affinity than single cyclodextrin-adamantane complexes. Immobilized nanoparticles were characterized by atomic force microscopy and quantified by fluorescence assay. Thus, the ability of CD-PEI nanoparticles to form inclusion complexes can be exploited to attain specific, high-affinity loading of delivery vehicles onto solid surfaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.