Abstract

Four new bis(benzimidazole)pyridine (BBP)-containing compounds Zn(BBP)Cl[Au(CN)2], Mn(BBP)[Au(CN)2]2·H2O, Mn(BBP)Br2(MeOH) and Mn(BBP)Cl2(MeOH)·MeOH have been synthesized and structurally characterized and their birefringence values (Δn) determined. The structure of Zn(BBP)Cl[Au(CN)2] contains a hydrogen-bonded dimer of Zn(BBP)Cl[Au(CN)2] units which propagate into a 1D chain through Au-Au interactions, although the crystals are of poor optical quality. The supramolecular structure of Mn(BBP)[Au(CN)2]2·H2 O forms a 1D coordination polymer through chains of Mn(BBP)[Au(CN)2]2 units, each containing one bridging Au(CN)2 and one forming a 2D sheet through Au-Au interactions. The supramolecular structures of Mn(BBP)Br2(MeOH) and Mn(BBP)Cl2(MeOH)·MeOH are very similar, consisting of a complex hydrogen-bonded network between NH imidazole, methanol and halide groups to align BBP building blocks. In the plane of the primary crystal growth direction, the birefringence values of the three Mn-containing materials were Δn=0.08(1), 0.538(3) and 0.69(3), respectively. The latter two birefringence values are larger than in the related 2,2';6'2''-terpyridine systems, placing them among the most birefringent solids reported. These compounds illustrate the utility of extending the π-system of the building block and incorporating hydrogen-bonding sites as design elements for highly birefringent materials and also illustrates the effect on the measurable birefringence of the crystal quality, growth direction and structural alignment of the anisotropic BBP building blocks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.