Abstract

Vaccination shows great promise in cancer immunotherapy. However, the induction of robust and broad therapeutic CD8 T cell immunity against tumors is challenging due to the essential heterogenicity of tumor antigen expression. Recently, bioinspired materials have reshaped the field of cancer nanomedicine. Herein, a bioinspired nanofibrous trivalent peptide hydrogel vaccine was constructed using the spontaneous supramolecular co-assembly of three antigenic epitope-conjugated peptides, which could mimic the fibrillar structure and biological function of the extracellular matrix and naturally occurring protein assembly. The hydrogel vaccine could be accurately and flexibly adjusted to load each antigenic peptide at a defined ratio, which facilitated the antigen presentation of dendritic cells and significantly improved the initiation of CD8 T cell response and the secretion of interferon-γ (IFN-γ). C57BL/6 mice were immunized with the trivalent peptide hydrogel vaccine, where it elicited a high broad-spectrum antitumor CD8 T cell response that significantly inhibited the growth of B16 tumors in the absence of additional immunoadjuvants or delivery systems. In summary, the supramolecular assembly of triple antigenic epitope-conjugated peptides offers a simple, customizable, and versatile approach for the development of cancer vaccines with remarkable therapeutic efficacy, thereby providing a highly versatile platform for the application of personalized multivalent tumor vaccines. STATEMENT OF SIGNIFICANCE: (1) We report a feasible, versatile and bioinspired approach to manufacture a multivalent peptide-based hydrogel cancer vaccine in the absence of additional adjuvants, which closely mimics immune niches, co-delivers antigen epitopes, greatly promotes antigen presentation to DCs and their subsequent homing to dLNs and elicits a broad-spectrum antitumor CD8 T cell response, resulting in significant inhibition of B16 tumor growth. (2) This feasible and efficient co-assembly strategy provides an attractive platform for engineering a range of multivalent vaccines at defined ratios to further enhance antigen-specific T cell responses. This approach may also be used for personalized immunotherapy with neo-epitopes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call