Abstract

Two new Mn(II) and Zn(II) metal–organic compounds of 1,10-phenanthroline and methyl benzoates viz. [Mn(phen)2Cl2]2-ClBzH (1) and [Zn(4-MeBz)2(2-AmPy)2] (2) (where 4-MeBz = 4-methylbenzoate, 2-AmPy = 2-aminopyridine, phen = 1,10-phenanthroline, 2-ClBzH = 2-chlorobenzoic acid) were synthesized and characterized using elemental analysis, TGA, spectroscopic (FTIR, electronic) and single crystal X-ray diffraction techniques. The crystal structure analysis of the compounds revealed the presence of various non-covalent interactions, which provides stability to the crystal structures. The crystal structure analysis of compound 1 revealed the formation of a supramolecular dimer of 2-ClBzH enclathrate within the hexameric host cavity formed by the neighboring monomeric units. Compound 2 is a mononuclear compound of Zn(II) where flexible binding topologies of 4-CH3Bz are observed with the metal center. Moreover, various non-covalent interactions, such as lp(O)-π, lp(Cl)-π, C–H∙∙∙Cl, π-stacking interactions as well as N–H∙∙∙O, C–H∙∙∙O and C–H∙∙∙π hydrogen bonding interactions, are found to be involved in plateauing the molecular self-association of the compounds. The remarkable enclathration of the H-bonded 2-ClBzH dimer into a supramolecular cavity formed by two [Mn(phen)2Cl2] complexes were further studied theoretically using density functional theory (DFT) calculations, the non-covalent interaction (NCI) plot index and quantum theory of atoms in molecules (QTAIM) computational tools. Synergistic effects were also analyzed using molecular electrostatic potential (MEP) surface analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call