Abstract

The use of DFT-calculated energy-vector diagrams (EVDs) featuring the topology of pairwise intermolecular interaction energies is applied to crystals of carbo-benzenes. A homogeneous set of six ideally centrosymmetric tetraphenyl-carbo-benzenes is selected, with various substituents R in para positions: R=4-anisyl, 1-ethyl-2-phenyl-1H-indol-3-yl, 2-chloro-2-(1-ethyl-2-phenyl-1H-indol-3-yl)ethenyl, tetradecyl, and 9,9-dihexyl-9H-fluoren-2-yl, 2-(9,9-dihexyl-9H-fluoren-2-yl)ethynyl. The basic structural motifs (BSMs) of the crystals vary from layers to columns, depending on the size and shape of the substituents R. The BSM cohesion is shown to rely on π-stacking, CH-π and dispersive interactions. Solvate molecules are shown to have a negligible role in the formation of the BSM, whereas they loosen the interaction between neighbouring BSMs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call