Abstract

BackgroundThe number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Rodent suprafamilial phylogenetic relationships are investigated in the present study using ~7600 nucleotide characters derived from two mitochondrial genes (Cytochrome b and 12S rRNA), two nuclear exons (IRBP and vWF) and four nuclear introns (MGF, PRKC, SPTBN, THY). Because increasing the number of nucleotides does not necessarily increase phylogenetic signal (especially if the data is saturated), we assess the potential impact of saturation for each dataset by removing the fastest-evolving positions that have been recognized as sources of inconsistencies in phylogenetics.ResultsTaxonomic sampling included multiple representatives of all five rodent suborders described. Fast-evolving positions for each dataset were identified individually using a discrete gamma rate category and sites belonging to the most rapidly evolving eighth gamma category were removed. Phylogenetic tree reconstructions were performed on individual and combined datasets using Parsimony, Bayesian, and partitioned Maximum Likelihood criteria. Removal of fast-evolving positions enhanced the phylogenetic signal to noise ratio but the improvement in resolution was not consistent across different data types. The results suggested that elimination of fastest sites only improved the support for nodes moderately affected by homoplasy (the deepest nodes for introns and more recent nodes for exons and mitochondrial genes).ConclusionThe present study based on eight DNA fragments supports a fully resolved higher level rodent phylogeny with moderate to significant nodal support. Two inter-suprafamilial associations emerged. The first comprised a monophyletic assemblage containing the Anomaluromorpha (Anomaluridae + Pedetidae) + Myomorpha (Muridae + Dipodidae) as sister clade to the Castorimorpha (Castoridae + Geomyoidea). The second suprafamilial clustering identified a novel association between the Sciuromorpha (Gliridae + (Sciuridae + Aplodontidae)) and the Hystricomorpha (Ctenodactylidae + Hystricognathi) which together represents the earliest dichotomy among Rodentia. Molecular time estimates using a relaxed Bayesian molecular clock dates the appearance of the five suborders nearly contemporaniously at the KT boundary and this is congruent with suggestions of an early explosion of rodent diversity. Based on these newly proposed phylogenetic relationships, the evolution of the zygomasseteric pattern that has been used for a long time in rodent systematics is evaluated.

Highlights

  • The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families

  • For the introns (MGF, PRKC, SPTBN and THY), the number of base pairs for the full alignments and those remaining after removal of the poorly aligned positions with Gblocks, together with the number of positions in intronic and exonic regions, are indicated for each gene in Table 1

  • We determined the distribution of sites according to eight evolutionary Gamma rates and we assess the impact of removing fastest sites on phylogenetic reconstructions

Read more

Summary

Introduction

The number of rodent clades identified above the family level is contentious, and to date, no consensus has been reached on the basal evolutionary relationships among all rodent families. Huchon et al [4] recognized the Laotian rock rat (Laonastes aenigmamus) from Laos [5] as an additional family Diatomyidae closely related to the Ctenodactylidae. Despite this new addition, the number of initially recognized rodent families by Simpson [2] and Wood [6] remained fairly stable (for review see [3]). In the present study we adopted the most up to date suprafamilial classification as reviewed by Carleton and Musser [3] who recognize five suborders (Sciuromorpha, Castorimorpha, Myomorpha, Anomaluromorpha and Hystricomorpha)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call