Abstract

The circadian pacemaker of the suprachiasmatic nucleus (SCN) is likely to control the timing of the sleep–wake cycle in mammals by modulating the daily activity patterns of brain regions important in sleep and wakefulness. One such brain region is the paraventricular nucleus of the thalamus (PVT). In both nocturnal rats and the diurnal rodent Arvicanthis niltoicus (Nile grass rat), expression of Fos (the product of the immediate-early gene c- fos) in the PVT increases at times of day when the animals are most active. To compare the projections of the SCN to the PVT in these two species, the retrograde tracer cholera toxin (β subunit; CTβ) was microinjected into the PVT and the SCN was examined to identify labeled neurons. Further, the PVT-projecting SCN cells containing either arginine vasopressin (AVP) or gastrin releasing peptide (GRP) were also compared between species. In both nocturnal rats and diurnal Nile grass rats, the SCN sends a substantial projection to the PVT. In both species, many PVT-projecting SCN neurons contain AVP, and few contain GRP. Other work has shown that some AVP-containing neurons of the SCN function differently in rats and Nile grass rats. Projections from functionally distinct SCN neurons to the PVT may contribute to the difference in the temporal distribution of sleep and wakefulness seen between these two species.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.