Abstract

Intercellularly aligned microtubule arrays are present in cell layers associated with the growth and secretion of scales in the zebra fish Brachydanio rerio and the neon tetra fish Hyphessobrycon innesi. The layers in question are: the osteoblast layer that covers the ossified outer surface of a scale, and the layer of fibroblasts that is situated immediately underneath the inner collagenous surface of a scale's fibrillary plate. In certain osteoblasts, the proximal portions of microtubules (with respect to centrosomes) run closely alongside the anterior margin of each cell where it flanks one of a scale's ridge-shaped circuli. These osteoblasts and microtubule portions are arranged in aligned rows that are parallel to circuli. However, the distal portions of the microtubules curve into an orientation that is approximately at right angles to circuli and they are aligned with each other and similar microtubule portions in adjacent osteoblasts. Such microtubule alignments only occur in osteoblasts that are associated with circuli. In Hyphessobrycon osteoblasts situated elsewhere on a scale's surface, microtubules radiate from cell centres but their distal portions curve into alignment with each other and are oriented alongside cell margins. The proximal portions of fibroblast microtubules radiate from centrally positioned centrosomes but the distal portions curve into alignment with each other and distal microtubule portions in neighbouring fibroblasts. The overall pattern of microtubule alignment is similar to that of collagen fibres, which these fibroblasts are secreting onto the fibrillary plate. The immunofluorescence protocol that was used to demonstrate the microtubule alignments described above did not reveal such alignments in the osteoblast and fibroblast layers associated with scales of the brown trout Salmo trutta fario. These findings are assessed in terms of intra-and inter-cellular control of microtubule alignment, and decentralized reorientation of microtubules at distances of several micrometres from centrosomal microtubule-organizing centres. The functional significance of the relationships between microtubule alignment and supracellular patterns of alignment that take place as collagen deposition and ossification proceed during scale formation is also considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.