Abstract

Inhibitory neurons participating in the bilateral disynaptic inhibition of jaw-closing motoneurons by stimulation of unilateral trigeminal sensory branches were searched for in the reticular formation around the trigeminal motor nucleus in cats anaesthetized with pentobarbital. Extracellular recordings were made from neurons which responded orthodromically after a monosynaptic latency to single shock stimulation of the ipsilateral infraorbital and/or inferior alveolar nerves. Direct inhibitory connection with contralateral masseter motoneurons was demonstrated in reticular neurons by the spike-triggered averaging technique, i.e., by averaging the intracellular potentials of a contralateral masseter motoneuron with respect to spontaneously occurring spikes of a reticular interneuron. By intraaxonal injection of neurobiotin, electrophysiologically identified inhibitory premotor reticular neurons were found to project to and to terminate in the trigeminal motor nuclei on both sides. Termination in the contralateral motor nucleus was demonstrated for four neurons that showed the peripheral input pattern stated above. The results provide hard evidence for contralaterally projecting interneurons in the reticular formation, participating in peripherally evoked disynaptic inhibition of masseter motoneurons on the contralateral side. Given the previously reported findings that the supratrigeminal region contains neurons which project to the ipsilateral motor nucleus and mediate disynaptic inhibition of masseter motoneurons, it is suggested that the supratrigeminal region contains bilaterally projecting interneurons, mediating peripherally evoked disynaptic inhibition of masseter motoneurons on both sides.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call