Abstract

Hedgehog signaling is essential for vertebrate development; however, less is known about the negative regulators that influence this pathway. Using the mouse P19 embryonal carcinoma cell model, suppressor of fused (SUFU), a negative regulator of the Hedgehog (Hh) pathway, was investigated during retinoic acid (RA)-induced neural differentiation. We found Hh signaling increased activity in the early phase of differentiation, but was reduced during terminal differentiation of neurons and astrocytes. This early increase in pathway activity was required for neural differentiation; however, it alone was not sufficient to induce neural lineages. SUFU, which regulates signaling at the level of Gli, remained relatively unchanged during differentiation, but its loss through CRISPR-Cas9 gene editing resulted in ectopic expression of Hh target genes. Interestingly, these SUFU-deficient cells were unable to differentiate toward neural lineages without RA, and when directed toward these lineages, they showed delayed and decreased astrocyte differentiation; neuron differentiation was unaffected. Ectopic activation of Hh target genes in SUFU-deficient cells remained throughout RA-induced differentiation and this was accompanied by the loss of Gli3, despite the presence of the Gli3 message. Thus, the study indicates the proper timing and proportion of astrocyte differentiation requires SUFU, likely acting through Gli3, to reduce Hh signaling during late-stage differentiation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.