Abstract

Although yeast cannot normally incorporate exogenous deoxythymidine 5'-monophosphate (dTMP) into deoxyribonucleic acid, mutants able to do so have been isolated. We have characterized a recessive suppressor of dTMP uptake (sot1) that prevents strains carrying either tup1, tup2, or tup4 from growing on selective medium. The sot1 mutation maps between rad1 and the centromere of chromosome XVI, and is unlinked to any of the tup mutations. The sot1 mutation does not suppress the other pleiotropic effects of the tup1 mutant, notably the lack of mating of tup1 MATalpha strains. The sot1 mutation specifically blocks the uptake of dTMP into tup strains. After growing a sot1 strain in medium containing [3H]dTMP, we showed that the medium still contained more than 90% of the original [3H]dTMP and that this medium could support the incorporation of [3H]dTMP by a tup2 strain. Therefore, sot1 strains do not degrade dTMP in the medium. The sot1 mutation had no effect on the uptake of other nutrients essential for growth, including several amino acids, adenine, and uracil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.