Abstract

The SOCS/CIS is a family of intracellular proteins distributed widely among living organisms. The members of this family have extensively been studied in mammals and have been shown to regulate various physiological processes. In contrast, the functional roles of SOCS/CIS family proteins are unknown in most invertebrates, including insects. Here, we retrieved a full-length open reading frame (ORF) of SOCS-6 from Chines oak silkworm, Antheraea pernyi (Designated as ApSOCS-6), using the RNA-seq database. The predicted ApSOCS-6 amino acid sequence comprised an N-terminal SH2 domain and a C-terminal SOCS-box domain. It shared the highly conserved structures of the SOCS proteins with other lepidopteran species. ApSOCS-6 mRNA transcript was detected in all the tested tissues of the A. pernyi larvae; however, the highest mRNA levels were found in the larval hemocytes, fat bodies, and integuments. The mRNA transcript levels of ApSOCS-6 were increased in the A. pernyi larval hemocytes and fat bodies after a challenge by the Gram-positive bacteria, M. luteus, Gram-negative bacteria, Escherichia coli, Virus, ApNPV, and Fungus, B. bassiana. After the knockdown of ApSOCS-6, we found a significant increase in bacterial clearance and a decrease in the relative replication of bacteria. To evaluate the possible cause of enhanced antibacterial activity, we measured antimicrobial peptides expression in the fat body of A. pernyi larvae. The production of AMPs was strongly increased in the B. cereus infected larval fat bodies following silencing of ApSOCS-6. Our data indicate that ApSOCS-6 negatively regulates the expression of AMPs in immune tissues in response to the B. cereus challenge.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.