Abstract

AbstractStrong metal‐support interactions (SMSI) have gained great attention in the heterogeneous catalysis field, but its negative role in regulating light‐induced electron transfer is rarely explored. Herein, we describe how SMSI significantly restrains the activity of Ru/TiO2 in light‐driven CO2 reduction by CH4 due to the photo‐induced transfer of electrons from TiO2 to Ru. In contrast, on suppression of SMSI Ru/TiO2−H2 achieves a 46‐fold CO2 conversion rate compared to Ru/TiO2. For Ru/TiO2−H2, a considerable number of photo‐excited hot electrons from Ru nanoparticles (NPs) migrate to oxygen vacancies (OVs) and facilitate CO2 activation under illumination, simultaneously rendering Ruδ+ electron deficient and better able to accelerate CH4 decomposition. Consequently, photothermal catalysis over Ru/TiO2−H2 lowers the activation energy and overcomes the limitations of a purely thermal system. This work offers a novel strategy for designing efficient photothermal catalysts by regulating two‐phase interactions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call