Abstract

As molecular design and the structure-property relationships of photochemical molecules established in the literature serve as a convenient reference for mechanophore exploration, many typical mechanophores suffer undesired responses to UV light or even sunlight in bulk polymers. We developed a strategy of a poly(methyl acrylate)/polyurethane (PMA/PU) interpenetrating polymer network (IPN) to suppress the photochromic property of the mechanophore and promote its mechanochromic property. A widely used rhodamine mechanophore (Rh-2OH) was first incorporated into polyurethane (P1). Then P1 was swollen in methyl acrylate and photopolymerized to prepare a PMA2.8/PU IPN (P2). Different from photo/force-responsive P1, P2 selectively responded to force because the low free volume in IPN greatly hinders photoisomerization of the rhodamine spirolactam, suggesting that a simple IPN strategy successfully resolves the giant problem of nonselective response to photo/force for photochromic mechanophores. Moreover, PMA/PU IPN enhanced the mechanical property, resulting in a higher mechanochemical activation ratio than PU, and the prestretching effect of PMA/PU IPN promoted the force sensitivity of rhodamine mechanophores significantly. We believe that the strategy can be applied to other mechanophores, promoting their application in more complicated environments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.