Abstract

The purpose of this study is to investigate the effect of TSAHC [4'-(p-toluenesulfonylamido)-4-hydroxychalcone] in K/BxN serum transfer arthritis model and fibroblast-like synoviocytes of rheumatoid arthritis (RA-FLS). In in vivo experiments, TSAHC attenuated the incidence and severity of arthritis in comparison with the vehicle group. Histological findings showed that TSAHC decreased the inflammation, bone erosion, cartilage damage, and osteoclasts activity in the ankle. Furthermore, we confirmed by biochemical analysis that the observations were associated with the decreased expression of proinflammatory cytokines, matrix metalloproteinases (MMPs), and RANKL in serum and ankle. In in vitro experiments, TSAHC induced apoptosis, while it significantly suppressed tumor necrosis factor-α (TNF-α)-induced cell proliferation in RA-FLS. Moreover, TSAHC inhibited mRNA expression of TNF-α-induced interleukin (IL)-6, MMP-1, MMP-3, and MMP-13. Evaluation of signaling events showed that TSAHC inhibited the translocation and transcriptional activity of nuclear factor-kappa B (NF-κB) by regulating phosphorylated-IκB-α (p-IκB-α) and IκB-α in TNF-α-induced RA-FLS. Our results suggest that TSAHC inhibits experimental arthritis in mice and suppresses TNF-α-induced RA-FLS activities via NF-κB pathway. Therefore, TSAHC may have therapeutic potential for the treatment of RA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.