Abstract

Endoplasmic reticulum (ER) stress is defined as an accumulation of unfolded proteins in the endoplasmic reticulum. 4-phenylbutyrate (4-PBA) has been demonstrated to promote the normal trafficking of the DeltaF508 cystic fibrosis transmembrane conductance regulator (CFTR) mutant from the ER to the plasma membrane and to restore activity. We have reported that 4-PBA protected against cerebral ischemic injury and ER stress-induced neuronal cell death. In this study, we revealed that 4-PBA possesses chemical chaperone activity in vitro, which prevents the aggregation of denatured alpha-lactalbumin and bovine serum albumin (BSA). Furthermore, we investigated the effects of 4-PBA on the accumulation of Parkin-associated endothelin receptor-like receptor (Pael-R) pathologically relevant to the loss of dopaminergic neurons in autosomal recessive juvenile parkinsonism (AR-JP). Interestingly, 4-PBA restored the normal expression of Pael-R protein and suppressed ER stress induced by the overexpression of Pael-R. In addition, we showed that 4-PBA attenuated the activation of ER stress-induced signal transduction pathways and subsequent neuronal cell death. Moreover, 4-PBA restored the viability of yeasts that fail to induce an ER stress response under ER stress conditions. These results suggest that 4-PBA suppresses ER stress by directly reducing the amount of misfolded protein, including Pael-R accumulated in the ER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.