Abstract
Plant-parasitic nematodes are one of the main biotic factors limiting agricultural production worldwide, with root-knot nematodes (Meloidogyne spp.) being the most damaging group. This study was conducted to evaluate the efficacy of soil microbiomes, associated with various subtropical fruit trees, on the management of a Meloidogyne enterolobii population. Of 14 soil microbiomes tested for nematode suppression, 9 samples in the first experiment and 10 samples in the repeat experiment had significantly (p ≤ 0.05) lower numbers of eggs and J2 compared to the untreated control. The highest nematode suppression was recorded for SA12 extracted from a papaya orchard with a 38% reduction in the nematode population density. In addition, the presence of some bacteria (Bacillus aryabhattai, B. funiculus and B. simplex) and fungi (Metarhizium marquandii, Acremonium sp. and Mortierella sp.) was correlated to a higher suppression potential in some samples. Substantial variations were observed for the diversity of bacterial and fungal isolates among the samples collected from various crop hosts and regions. This suggests that the nematode suppression potential of different soil microbiomes highly depends on the abundance and diversity of fungal and bacterial strains present in the soil. The study confirmed that among all variables, soil dryness, pH, Fe, Zn, organic matter, altitude, and crop cultivar strongly influenced the soil microbial composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.