Abstract

The role of regucalcin in the regulation of osteoblastic cell function was investigated. Osteoblastic MC3T3-E1 cells with subconfluent monolayers were cultured in a medium containing regucalcin (10(-10)-10(-8) M) without fetal bovine serum (FBS). The proliferation of osteoblastic cells was not significantly altered in the presence of regucalcin. The results of reverse transcription-polymerase chain reaction (RT-PCR) analysis with specific primers showed that the expression of Runx2 (Cbfa1) and insulin-like growth factor-I (IGF-I) mRNAs in osteoblastic cells was significantly suppressed in the presence of regucalcin (10(-10) or 10(-9) M). Transforming growth factor-beta1 mRNA levels were significantly enhanced in the 24 h-culture with regucalcin (10(-10) or 10(-9) M). Alpha1(I) collagen and glyceroaldehyde-3-phosphate dehydrogenase (G3PDH) mRNA levels were not significantly changed by culture with regucalcin (10(-10) or 10(-9) M). Alkaline phosphatase activity was significantly decreased in the lysate of cells cultured for 24 or 48 h with regucalcin (10(-10)-10(-8) M). Moreover, the expression of regucalcin in osteoblastic cells was demonstrated by RT-PCR and Western blot analysis. When regucalcin (10(-7) M) was added into the enzyme reaction mixture containing the lysate of osteoblastic cells cultured in the absence of regucalcin, alkaline phosphatase activity was significantly decreased. Also, Ca2+/calmodulin-dependent nitric oxide (NO) synthase activity in the cell lysate was significantly decreased by addition of regucalcin (10(-10)-10(-8) M) into the reaction mixture. The presence of anti-regucalcin monoclonal antibody (5 or 10 ng/ml) in the enzyme reaction mixture caused a significant increase in NO synthase activity in the cell lysate in the presence or absence of Ca2+/calmodulin, suggesting a role of endogenous regucalcin. When osteoblastic cells with subconfluency were cultured in the presence of regucalcin (10(-10) or 10(-9) M) for 3, 9, or 18 days, the results with Alizarin red staining showed that the mineralization was markedly suppressed by culture with regucalcin for 3, 9, or 18 days. This study demonstrates that regucalcin regulates the function of osteoblastic cells, and that the protein suppresses cell differentiation and mineralization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.