Abstract

We examined the role of protein kinase C (PKC) in the phosphorylation of a p53 protein. Exposure to a protein kinase inhibitor, 1-(5-isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H7), increased the phosphorylation of the wild type p53 protein, whereas exposure to a tumor promoter phorbol ester, 12-O-tetradecanoyl-phorbol-13-acetate (TPA), decreased it in vivo after incubation with mouse epidermal JB6 cells for 3 h. Exposure to a cAMP dependent protein kinase (PKA) activator, forskolin, did not decrease the phosphorylation of p53 protein. In the transient transfection/luciferase reporter transactivation assay, H7 slightly increased the mouse double minute (MDM) 2 reporter transactivation activity of the p53 protein after treatment for 24 h, whereas TPA completely blocked it. Exposure to H7 and a specific PKC inhibitor, bisindolylmaleimide (bis), dose-dependently reduced the lung-colonizing potential of highly metastatic B16-F10 mouse melanoma cells in syngeneic mice. These results suggest that the phosphorylation of the wild type p53 protein is inversely related to PKC activation, and also suggest that the phosphorylation of the p53 protein is involved in the function of its transcription factor. The PKC inhibitor may exhibit a potent anti-metastatic effect through the phosphorylation of wild type p53 protein and the activation of its function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.