Abstract

Simple SummaryThis study explored the chemopreventive effects of Houttuynia cordata Thunb. (HCT) extracts against prostate carcinogenesis in both androgen-sensitive prostate cancer and castration-resistant prostate cancer (CRPC) using the Transgenic Rat for Adenocarcinoma of Prostate (TRAP) model, CRPC xenograft mice, and prostate cancer cell lines. HCT suppressed cell proliferation and stimulated apoptosis via inactivation of AKT/ERK/MAPK in both androgen-sensitive prostate cancer and CRPC cell lines. HCT also inhibited cell migration and EMT phenotypes through the STAT3/Snail/Twist pathway. One of the active compounds of HCT was identified as rutin. Consistent with in vitro study, the incidence of adenocarcinoma in the TRAP model and CRPC tumor growth in the xenograft model were suppressed by induction of apoptosis and inactivation of AKT/ERK/MAPK by HCT intake. Our data demonstrated that HCT attenuated androgen-sensitive prostate cancer and CRPC by mechanisms that may involve inhibition of cell growth and caspase-dependent apoptosis pathways.Houttuynia cordata Thunb. (HCT) is a well-known Asian medicinal plant with biological activities used in the treatment of many diseases including cancer. This study investigated the effects of HCT extract and its ethyl acetate fraction (EA) on prostate carcinogenesis and castration-resistant prostate cancer (CRPC). HCT and EA induced apoptosis in androgen-sensitive prostate cancer cells (LNCaP) and CRPC cells (PCai1) through activation of caspases, down-regulation of androgen receptor, and inactivation of AKT/ERK/MAPK signaling. Rutin was found to be a major component in HCT (44.00 ± 5.61 mg/g) and EA (81.34 ± 5.21 mg/g) in a previous study. Rutin had similar effects to HCT/EA on LNCaP cells and was considered to be one of the active compounds. Moreover, HCT/EA inhibited cell migration and epithelial-mesenchymal transition phenotypes via STAT3/Snail/Twist pathways in LNCaP cells. The consumption of 1% HCT-mixed diet significantly decreased the incidence of adenocarcinoma in the lateral prostate lobe of the Transgenic rat for adenocarcinoma of prostate model. Similarly, tumor growth of PCai1 xenografts was significantly suppressed by 1% HCT treatment. HCT also induced caspase-dependent apoptosis via AKT inactivation in both in vivo models. Together, the results of in vitro and in vivo studies indicate that HCT has inhibitory effects against prostate carcinogenesis and CRPC. This plant therefore should receive more attention as a source for the future development of non-toxic chemopreventive agents against various cancers.

Highlights

  • Prostate cancer is the second most frequent malignancy in men worldwide [1]

  • We investigated the high-performance liquid chromatography (HPLC) chromatograms of Houttuynia cordata Thunb. (HCT) crude extract compared to all fractions, including H, ethyl acetate (EA), and R fractions

  • Inactivation of AKT by EA was observed in both LNCaP and PCai1 cells, while HCT decreased p-AKT only in PCai1 cells. These results indicate that the effect of HCT and EA in LNCaP and PCai1 are related to the decreased expression of the androgen receptor (AR) and inactivation of AKT, extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (MAPK) signaling pathways, leading to the stimulation of apoptosis in androgen-sensitive prostate cancer and castration-resistant prostate cancer (CRPC) cells

Read more

Summary

Introduction

Prostate cancer is the second most frequent malignancy in men worldwide [1]. Its incidence and mortality rates are strongly correlated with rising age, with the average age range significantly greater than 65 years [2]. Prostate cancer progression and growth depend on androgens and can be inhibited by androgen deprivation therapy (ADT) [3,4,5]. The activation of a ligand-independent androgen receptor (AR) is known as an outlaw pathway, or non-genomic AR signaling, which stimulates AR phosphorylation by either the AKT (protein kinase B) or the mitogen-activated protein kinase (MAPK) pathways [7,8,9,10]. Inhibition of these pathways is the objective for prevention of the prostate carcinogenesis and CRPC

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call