Abstract

BackgroundTo understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. In the study, two cDNA libraries of lung cancer were constructed and screened for identification of differentially expressed genes.MethodsTwo cDNA libraries of differentially expressed genes were constructed using lung adenocarcinoma tissue and adjacent nonmalignant lung tissue by suppression subtractive hybridization. The data of the cDNA libraries were then analyzed and compared using bioinformatics analysis. Levels of mRNA and protein were measured by quantitative real-time polymerase chain reaction (q-RT-PCR) and western blot respectively, as well as expression and localization of proteins were determined by immunostaining. Gene functions were investigated using proliferation and migration assays after gene silencing and gene over-expression.ResultsTwo libraries of differentially expressed genes were obtained. The forward-subtracted library (FSL) and the reverse-subtracted library (RSL) contained 177 and 59 genes, respectively. Bioinformatic analysis demonstrated that these genes were involved in a wide range of cellular functions. The vast majority of these genes were newly identified to be abnormally expressed in lung cancer. In the first stage of the screening for 16 genes, we compared lung cancer tissues with their adjacent non-malignant tissues at the mRNA level, and found six genes (ERGIC3, DDR1, HSP90B1, SDC1, RPSA, and LPCAT1) from the FSL were significantly up-regulated while two genes (GPX3 and TIMP3) from the RSL were significantly down-regulated (P < 0.05). The ERGIC3 protein was also over-expressed in lung cancer tissues and cultured cells, and expression of ERGIC3 was correlated with the differentiated degree and histological type of lung cancer. The up-regulation of ERGIC3 could promote cellular migration and proliferation in vitro.ConclusionsThe two libraries of differentially expressed genes may provide the basis for new insights or clues for finding novel lung cancer-related genes; several genes were newly found in lung cancer with ERGIC3 seeming a novel lung cancer-related gene. ERGIC3 may play an active role in the development and progression of lung cancer.

Highlights

  • To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial

  • LPCAT1 may contribute to total choline metabolite accumulation via phosphatidylcholine remodeling, thereby altering the colorectal cancer lipid profile, a characteristic of malignancy [23], but this was investigated in a separate work as the current study focuses on Endoplasmic reticulum-Golgi intermediate compartment protein 3 (ERGIC3)

  • ERGIC3 may play an active role in the development and progression of lung cancer

Read more

Summary

Introduction

To understand the carcinogenesis caused by accumulated genetic and epigenetic alterations and seek novel biomarkers for various cancers, studying differentially expressed genes between cancerous and normal tissues is crucial. Studying differentially expressed genes between cancer and normal tissues is crucial to understanding carcinogenesis and identifying novel biomarkers for cancer [2,3]. The cDNA library generated by hybridization and subtraction techniques reduces abundantly expressed housekeeping genes or genes commonly expressed in both control and treated individuals, thereby normalizing the cDNA expression profiles during library construction [4]. As a result, this technique significantly enhances the chances of differentially expressed genes [5]. SSH has been successfully applied to a wide variety of malignant diseases including lung cancer for the generation of cDNA libraries [6-10]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call