Abstract
The linear stability of two-layer plane Couette flow of FENE-P fluids past a deformable solid layer is analyzed in order to examine the effect of solid deformability on the interfacial instability due to elasticity and viscosity stratification at the two-fluid interface. The solid layer is modeled using both linear viscoelastic and neo-Hookean constitutive equations. The limiting case of two-layer flow of upper-convected Maxwell (UCM) fluids is used as a starting point, and results for the FENE-P case are obtained by numerically continuing the UCM results for the interfacial mode to finite values of the chain extensibility parameter. For the case of two-layer plane Couette flow past a rigid solid surface, our results show that the finite extensibility of the polymer chain significantly alters the neutral stability boundaries of the interfacial instability. In particular, the two-layer Couette flow of FENE-P fluids is found to be unstable in a larger range of nondimensional parameters when compared to two-layer flow of UCM fluids. The presence of the deformable solid layer is shown to completely suppress the interfacial instability in most of the parameter regimes where the interfacial mode is unstable, while it could have a completely destabilizing effect in other parameter regimes even when the interfacial mode is stable in rigid channels. When compared with two-layer UCM flow, the two-layer FENE-P case is found in general to require solid layers with relatively lower shear modulii in order to suppress the interfacial instability. The results from the linear elastic solid model are compared with those obtained using the (more rigorous) neo-Hookean model for the solid, and good agreement is found between the two models for neutral stability curves pertaining to the two-fluid interfacial mode. The present study thus provides an important extension of the earlier analysis of two-layer UCM flow [V. Shankar, Stability of two-layer viscoelastic plane Couette flow past a deformable solid layer: implications of fluid viscosity stratification, J. Non-Newtonian Fluid Mech. 125 (2005) 143–158] to more accurate constitutive models for the fluid and solid layers, and reaffirms the central conclusion of instability suppression in two-layer flows of viscoelastic fluids by soft elastomeric coatings in more realistic settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.