Abstract

Reducing losses caused by pathogens is an effective strategy for stabilizing crop yields. Daunting challenges remain in cloning and characterizing genes that inhibit stripe rust, a devastating disease of wheat (Triticum aestivum) caused by Puccinia striiformis f. sp. tritici (Pst). We found that suppression of wheat zeaxanthin epoxidase 1 (ZEP1) increased wheat defense against Pst. We isolated the yellow rust slower 1 (yrs1) mutant of tetraploid wheat in which a premature stop mutation in ZEP1-B underpins the phenotype. Genetic analyses revealed increased H2O2 accumulation in zep1 mutants and demonstrated a correlation between ZEP1 dysfunction and slower Pst growth in wheat. Moreover, wheat kinase START 1.1 (WKS1.1, Yr36) bound, phosphorylated, and suppressed the biochemical activity of ZEP1. A rare natural allele in the hexaploid wheat ZEP1-B promoter reduced its transcription and Pst growth. Our study thus identified a novel suppressor of Pst, characterized its mechanism of action, and revealed beneficial variants for wheat disease control. This work opens the door to stacking wheat ZEP1 variants with other known Pst resistance genes in future breeding programs to enhance wheat tolerance to pathogens.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.