Abstract

The control of individual magnetic domain walls has potential for future spintronic memory and data processing applications. The speed and reliability of such devices are determined by the dynamic properties of the domain walls. Typically, spin precession limitations lead to Walker breakdown, limiting wall velocity resulting in low mobility. Here, we show the suppression of Walker breakdown by the careful design of small amplitude periodic nanowire structuring to match the periodicity of domain wall spin structure transformations. This opens up a channel for energy dissipation via spin wave emission, allowing a domain wall to maintain its spin structure during propagation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call