Abstract
The laws of thermodynamics require any initial macroscopic inhomogeneity in extended many-body systems to be smoothed out by the time evolution through the activation of transport processes. In generic, non-integrable quantum systems, transport is expected to be governed by a diffusion law, whereas a sufficiently strong quenched disorder can suppress it completely due to many-body localization of quantum excitations. Here we show that the confinement of quasi-particles can also lead to transport suppression even if the dynamics are generated by homogeneous Hamiltonians. We demonstrate this in the quantum Ising chain with transverse and longitudinal magnetic fields in the paradigmatic case of the evolution of domain-wall states. We perform extensive numerical simulations of the dynamics which turn out to be in excellent agreement with an effective analytical description valid within both weak and strong confinement regimes. Our results show that the energy flow from "hot" to "cold" regions of the chain is suppressed for all accessible times. We argue that this phenomenon is connected with the presence of atypical states in the many-body energy spectrum which violate the eigenstate thermalization hypothesis, as recently reported in the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.