Abstract

Mutations in MCOLN1, which encodes the protein mucolipin 1, result in the lysosomal storage disease mucolipidosis Type IV. Studies on human mucolipin 1 and on CUP-5, the Caenorhabditis elegans ortholog of mucolipin 1, have shown that these proteins are required for lysosome biogenesis/function. Loss of CUP-5 results in a defect in lysosomal degradation, leading to embryonic lethality. We have identified a mutation in the ABC transporter MRP-4 that rescues the degradation defect and the corresponding lethality, owing to the absence of CUP-5. MRP-4 localizes to endocytic compartments and its levels are elevated in the absence of CUP-5. These results indicate that the lysosomal degradation defect is exacerbated in some cells because of the accumulation of MRP-4 in lysosomes rather than the loss of CUP-5 per se. We also show that under some conditions, loss of MRP-4 rescues the embryonic lethality caused by the loss of the cathepsin L protease, indicating that the accumulation of ABC transporters may be a more general mechanism whereby an initial lysosomal dysfunction is more severely compromised.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.