Abstract

Periodical forcing is used to control the spiral wave and turbulence in the modified Fithzhugh-Nagumo equation (MFHNe) when excitability is changed. The decisive parameter e of (MFHNe), which describes the ratio of time scales of the fast activator u and the slow inhibitor variable v, is supposed to increase linearly to simulate the excitability modulation in the media. In the numerical simulation, a local periodical stimulus is imposed on the left border of the media and the periods of external forcing are adjusted according to the approximate formula ω ∝1/e 1/3 so that using the most appropriate frequency for the external forcing can approach a shorter transient period. It is found that the spiral wave and turbulence can be removed successfully by using an appropriate periodical forcing on the left border of the media. The mean activator and distribution of frequency of all the sites are also used to analyze the transition of spiral wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.