Abstract

We report comparative studies of 6-nm-thick AlxGa1−xN/AlyGa1−yN pyroelectric quantum wells (QWs) grown by plasma-assisted molecular beam epitaxy on c-sapphire substrates with a thick AlN buffer deposited under different growth conditions. The Al-rich growth conditions result in a 2D growth mode and formation of a planar QW, whereas the N-rich conditions lead to a 3D growth mode and formation of a QW corrugated on the size scale of 200–300 nm. Time-resolved photoluminescence (PL) measurements reveal a strong quantum-confined Stark effect in the planar QW, manifested by a long PL lifetime and a red shift of the PL line. In the corrugated QW, the emission line emerges 200 meV higher in energy, the low-temperature PL lifetime is 40 times shorter, and the PL intensity is stronger (∼4 times at 4.5 K and ∼60 times at 300 K). The improved emission properties are explained by suppression of the quantum-confined Stark effect due to the reduction of the built-in electric field within the QW planes, which are not normal to the [0001] direction, enhanced carrier localization, and improved efficiency of light extraction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.