Abstract

An acidic-phospholipid deficiency caused by the pgsA3 allele that encodes a defective phosphatidylglycerophosphate synthase in Escherichia coli is lethal. The only known mutations that suppress this lethality fully have been related to the major outer-membrane lipoprotein. We isolated a Bacillus subtilis chromosomal locus that suppresses the lethality when harbored in a low copy-number plasmid, without restoring the synthase activity or phospholipid composition to normal. The locus was first recognized to suppress the conditional lethality of E. coli YA5512 (pgsA3) that harbored an unidentified mutation(s), allowing its growth in LB medium but not in media of lower osmolarities. The locus was then found to suppress the lethality of pgsA3 in wild-type E. coli W3110. This locus, named ypoP in the database, had 37% nucleotide identity with the E. coli mprA gene, but the amplification of mprA had no suppressive effect. Plasmid pPOP1 containing ypoP completely prevented the decrease in the amount of a porin protein, OmpF, in the outer membrane and also cell mucoidy caused by pgsA3. The mechanisms underlying these unusual effects are discussed in relation to a putative stress signal(s) generated by the acidic-phospholipid deficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.