Abstract
The impact of a flow-aligned and spatially homogeneous magnetic field on the filamentation instability (FI) is examined in a system of two equal counterstreaming non-relativistic cool electron beams. Particle-in-cell simulations that represent the plane perpendicular to the flow velocity vector confirm the reduction of the linear growth rate by the initial magnetic field. The FI is, however, not inhibited by a magnetic field with the critical strength, for which the solution of the linear dispersion relation predicts a full suppression. The saturation of the electromagnetic fields in the plasma involves a balance between the magnetic pressure gradient and the electric field resulting from the charge displacement. The simulations demonstrate that the magnetic energy gain and the field structure upon saturation do not depend on the initial magnetic field strength. This can be explained by the qualitative similarity of the spectrum of unstable wavenumbers, at least for subcritical strengths of the background magnetic field, and by the vanishing of the pressure gradient of a spatially homogeneous magnetic field. Magnetic trapping is apparently not the saturation mechanism for the considered plasma parameters. The spatial power spectrum of the saturated magnetic fields in the simulation plane can be approximated by a power-law function and the magnetic and electric spectra are similar at high wavenumbers. The final electron velocity distributions are comparable for all magnetic field strengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.