Abstract

A simple and novel method has been demonstrated for avoiding coffee ring structure based on hydrosoluble polymer additives during droplet evaporation. The polymer additives lead to the motion of the contact line (CL) resulted from the viscosity and Marangoni effect. The viscosity provides a large resistance to the radially outward flow. It results in a small amount of spheres deposited at droplet edge, which do not facilitate the pinning of the CL. The Marangoni effect resulted from the variation of polymer concentration at droplet edge during droplet evaporation contributes to the motion of the CL. Thus, uniform and ordered macroscale SiO(2) microspheres deposition is achieved. What's more, the coffee ring effect can be eliminated by different hydrosoluble polymer. This method will be applicable to a wide of aqueous system and will be of great significance for extensive applications of droplet deposition in biochemical assays and material deposition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.