Abstract

Many applications require laser emission with stable single polarization. While stable transverse-electric (TE) emission is favored by several mechanisms and, consequently, is relatively easy to obtain, achieving stable transverse-magnetic (TM) emission is more difficult. This letter proposes a method for suppressing the TE polarization by using a multiquantum-barrier. In our experiments, the multiquantum-barrier structure was inserted into the p-type cladding of tensile-strained GaInP-AlGaInP quantum-well lasers emitting at wavelengths shorter than 630 nm. As a result, the TE emission was suppressed over a wide range of injection levels, operating temperatures, and device lengths, proving that the method is effective for achieving stable TM emission.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call