Abstract

Tungsten (W) has been selected as the divertor material in ITER based on its promising thermal and mechanical properties. Despite these advantages, continued investigation has revealed W to undergo extreme surface morphology evolution in response to relevant fusion operating conditions. These complications spur the need for further exploration of W and other innovative plasma facing components (PFCs) for future fusion devices. Recent literature has shown that alloying of W with other refractory metals, such as tantalum (Ta), results in the enhancement of key PFC properties including, but not limited to, ductility, hydrogen isotope retention, and helium ion (He+) radiation tolerance. In the present study, pure W and W–Ta alloys are exposed to simultaneous and sequential low energy, He+ and deuterium (D+) ion beam irradiations at high (1223 K) and low (523 K) temperatures. The goal of this study is to cultivate a complete understanding of the synergistic effects induced by dual and sequential ion irradiation on W and W–Ta alloy surface morphology evolution. For the dual ion beam experiments, W and W–Ta samples were subjected to four different He+: D+ ion ratios (100% He+, 60% D+ + 40% He+, 90% D+ + 10% He+ and 100% D+) having a total constant He+ fluence of 6 × 1024 ion m−2. The W and W–Ta samples both exhibit the expected damaged surfaces under the 100% He+ irradiation, but as the ratio of D+/He+ ions increases there is a clear suppression of the surface morphology at high temperatures. This observation is supported by the sequential experiments, which show a similar suppression of surface morphology when W and W–Ta samples are first exposed to low energy He+ irradiation and then exposed to subsequent low energy D+ irradiation at high temperatures. Interestingly, this morphology suppression is not observed at low temperatures, implying there is a D–W interaction mechanism which is dependent on temperature that is driving the suppression of the microstructure evolution in both the pure W and W–Ta alloys. Minor irradiation tolerance enhancement in the performance of the W–Ta samples is also observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.