Abstract

We have studied the effect of tensile strain on the superconductivity in FeSe films. 50, 100, and 200 nm FeSe films were grown on MgO, SrTiO3, and LaAlO3 substrates by using a pulsed laser deposition technique. X-ray diffraction analysis showed that the tetragonal phase is dominant in all of our FeSe films. The 50 nm FeSe films on MgO and SrTiO3 are under tensile strain, while the 50 nm FeSe film on LaAlO3 and the other thick FeSe films are unstrained. Superconducting transitions have been observed in unstrained FeSe films with Tonset≈8 K, which is close to the bulk value. However, no sign of superconductivity has been observed in FeSe films under tensile strain down to 5 K. This is evidence to show that tensile strain suppresses superconductivity in FeSe films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.