Abstract

TAL1 is one of the most frequently dysregulated genes in T-ALL and is overexpressed in about 50% of T-ALL cases. One of the molecular mechanisms of TAL1 overexpression is abnormal mutations in the upstream region of the TAL1 promoter that introduce binding motifs for the MYB transcription factor. MYB binding at this location creates a 5' TAL1 super-enhancer (SE), which leads to aberrant expression of TAL1 and is associated with unfavorable clinical outcomes. Although targeting TAL1 is considered to be an attractive therapeutic strategy for patients with T-ALL, direct inhibition of transcription factors is challenging. Here, we show that KLF4, a known tumor suppressor in leukemic cells, suppresses SE-driven TAL1 expression in T-ALL cells. Mechanistically, KLF4 downregulates MYB expression by directly binding to its promoter and inhibits the formation of 5' TAL1 SE. In addition, we found that APTO-253, a small molecule inducer of KLF4, exerts an anti-leukemic effect by targeting SE-driven TAL1 expression in T-ALL cells. Taken together, our results suggest that the induction of KLF4 is a promising strategy to control TAL1 expression and could be a novel treatment for T-ALL patients with a poor prognosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.