Abstract
The key to fully realizing the potential of high-entropy alloys (HEAs) lies in balancing their inherent local chemical disordering with the long-range ordering required for electrochemical applications. Herein, we synthesized a distinctive L10-(PtIr)(FeMoBi) high-entropy intermetallics (HEIs) exhibiting nanoscale long-range order and atomic scale short-range disorder via a lattice compensation strategy to mitigate the entropy reduction tendency. The (PtIr)(FeMoBi) catalyst exhibited remarkable activity and selectivity of glycollic acid (GA) production via electrocatalytic waste polymer-derived ethylene glycol oxidation reaction (EGOR). With a mass activity of 5.2 A mgPt-1 and a Faradic efficiency (FE) for GA of 95 %, it outperformed most previously reported electrocatalysts for selective GA production. The lattice-compensation effect promotes the homogeneity of Pt and Fe actives sites, facilitating co-adsorption of EG and OH and reducing the energy barriers for dehydrogenation and OH-combination processes. This approach effectively avoids the formation of low-active sites commonly encountered in HEA solid solutions, offering a promising avenue for exploring the complex interplay between catalytic activity and HEI structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.